Shilong Lei

+1 765 775 7952 \diamond lei105@purdue.edu \diamond West Lafayette, INDIANA

LinkedIn ♦ Homepage

EDUCATION

Purdue University, Department of Computer Science

West Lafayette, United States

Ph.D student in Computer Science

Jul 2022 - Present

Tsinghua University, School of Information Science and Technology

Beijing, China

Bachelor of Engineering in Automation

Aug 2018 – Jul 2022

Awards:

* Technological Innovation Scholarship & Hage Foundation Scholarship of Tsinghua University

2019 - 2021

* MobiCom'24 Best Poster Award

Sep 2024

PUBLICATIONS

(MobiCom'24) "D-AirPatrol: A Dual-Layer Architecture for Traffic Patrol From the Sky." Jiaxin Du, Shilong Lei, Chunyi Peng. Best Poster Award.

(CONF-CDS 2021) "A Spatial-Temporal Adaptive Video Denoising Algorithm." Shilong Lei. Computing and Data Science: Third International Conference, Virtual Event, Aug 12–17, 2021, Proceedings 3. Springer Singapore. May 2021

INTERNSHIP

Meta Platforms - Ads Training Infra

Sunnyvale, CA

Research Scientist Intern in Distributed ML Systems

Mentor: Shuai Yang, May 2025 - Aug 2025

- · Collaborated with the FAIR PyTorch/FSDP team to co-design and implement an Automatic Selective Unsharding Framework atop SimpleFSDP (a PyTorch 2.0 compile-friendly FSDP), improving communication—computation overlap and training efficiency.
- · Built a hierarchical memory profiler and adaptive unsharding algorithm leveraging GPU memory budget for selective parameter retention, achieving up to 5.5% QPS improvement on 8×GPU ads-model benchmarks.
- · Enhanced SimpleFSDP infrastructure with configurable communication scheduling and integrated memory-computation optimization, enabling future adaptive distributed-training pipelines within Meta Ads Infra.

ByteDance - Seed Bellevue, WA

Research Scientist Intern in LLM infrastructure

Mentor: Yanghua Peng, May 2024 - Sep 2024

- · Supported a LLM training simulator to profile and simulate the training latency of LLM (especially diffusion transformer models) on 1k - 10k GPUs for text to video generation and customized computing kernels to achieve 95%+ accuracy.
- Supported memory profiling and distributed training simulation in frameworks like pytorch.distributed and deepspeedmegatron into the LLM training simulator and achieve 95% accuracy.
- · Supported PyTorch.FSDP & various parallelism techniques in Bytedance opensource distributed machine learning framework veScale to enhance LLM training efficiency to support Doubao large language model.

RESEARCH EXPERIENCE & PROJECTS

D-AirPatrol: an AI System for Traffic Monitoring from Drones

Purdue University

Researcher & Full-stack engineer

Advisor: Dr. Chunyi Peng, Jan 2024 - Nov 2024

- · Proposed a novel dual-layer architecture to decouple the foreground and background of aerial views to make drones air patrol for traffic monitoring more accurate and reliable. Developed an Android App to track cars and estimate car speed in real-time from DJI drone view. Built a public **Diango** website with user & tasks management for data collection.
- · Built a full-stack WebRTC streaming system to stream video from drones to edge server, and stream processed frames to client web browser. Presented a **demo** to view real-time speed monitoring video and results from a website.
- · Gained proficiency in Python, Pytorch, node.js, Java and Latex, and developed expertise in optimization and testing methods.
- · D-AirPatrol substantially outperforms the baseline, improving MOTA from 41% to 96.5%. Submitted a poster paper accepted by MobiCom 2024(Best Poster Award).

OOGC: Out-of-GPU-Core LLM Training System

Purdue University

Researcher & Full-stack engineer

Advisor: Dr.Xuehai Qian, May 2023 - Dec 2023

- Led the project with two interns to develop an Efficient Out-of-GPU-Core LLM training system based on DeepSpeed **ZeRO** and **Megatron-LM** for distributed LLM training.
- · Fully awared of the LLMs' execution pattern and hardware resources, the system runs over-sized models by CPU offloading and speeds up training by better utilizing GPU memory and reducing CPU-to-GPU communication.
- · With novel multi-layer **prefetching**, memory management system and pipelined optimizer stepping and optimized activation checkpointing, the system yields a 20% training speed improvement and 15% in MoE model training compared with baselines.

CPU Model Inference System

Purdue University

Researcher & Full-stack engineer

Advisor: Dr.Xuehai Qian, Oct 2022 - Apr 2023

· Designed and implemented a sparse-aware CPU inference system for deep neural networks, inspired by DeepSparse-style architectures, optimizing execution for large-core CPU clusters.

- · Proposed a novel **depth-direction forwarding** strategy that maximizes on-chip cache reuse and reduces memory bandwidth pressure, achieving substantial speedups over layer-by-layer scheduling.
- · Developed kernel-level optimizations in C++ and PyTorch backend, enabling efficient sparse tensor operations and low-latency inference for transformer-style workloads.
- · Strengthened expertise in **LLM inference infrastructure**, covering operator fusion, memory locality optimization, and CPU parallelism for model serving.

Video Classification & Video Denoising Algorithms

Los Angeles, CA & Beijing, China

Student Researcher

- Advisors: Dr. Ram Nevatia, Dr. Guoqing Xiang, Jan 2021 Sep 2021
- · Independently designed and implemented a **teacher**—student video classification framework leveraging temporally consistent spatial augmentation with PyTorch and OpenMMLab's MMAction2, improving cross-frame feature stability in long-horizon videos.
- · Proposed a novel **spatio-temporal adaptive video denoising algorithm** by integrating space-time adaptive processing into scene-change–aware filtering, effectively overcoming temporal failure modes of conventional time-domain methods.
- · Led the entire research lifecycle from conception, implementation, and experimental validation to first-author publication of "A Spatio-Temporal Adaptive Video Denoising Algorithm".

Multi-Camera 3D Pedestrian Detection & 3D Human Pose Reconstruction

Tsinghua University

Student Researcher

- Advisor: Dr. Jianjiang Feng, Oct 2021 Jun 2022
- · Independently proposed and implemented a multi-camera 3D pedestrian localization framework for large-scale public spaces, integrating probabilistic multi-view fusion, clustering, and CNN-based feature aggregation to precisely estimate each individual's global position across overlapping camera views.
- · Designed a **Bayesian consistency optimization module** to reconcile inter-camera depth ambiguity and improve cross-view association robustness under occlusion and perspective distortion.
- · Achieved superior localization accuracy compared to CVPR multi-camera baselines on in-the-wild datasets, demonstrating substantial gains in both precision and recall.
- · Further extended the pipeline to **3D human pose reconstruction** from multi-person videos, enabling high-fidelity body pose recovery under dynamic social interactions.

SKILLS

Languages: Python, C/C++, CUDA, MATLAB, Java, JavaScript, HTML, MIPS, LaTeX

Technologies: PyTorch, LLM, DeepSpeed, Megatron, Distributed Machine Learning, Ubuntu (Linux), Docker, Django, Node.js, MySQL, Qt, Wireshark, Verilog