Table of Contents

• Self Introduction

• <u>SimpleFSDP</u>: <u>Automatic Selective Unsharding</u> (Meta Ads Training)

• <u>DiT training simulator</u> (ByteDance Seed)

Out-of-GPU-core LLM training system (Dr. Xuehai Qian)

• AirLab Platform (Dr. Chunyi Peng)

• <u>D-Air-Patrol Project</u> (Dr. Chunyi Peng)

Self-Introduction

Shilong Lei

Self-Introduction

- Education
 - Purdue University, Department of Computer Science
 - Ph.D. student (3rd year)
 - Tsinghua University, School of Information Science and Technology
 - B.E. in Automation
- Internship
 - ByteDance Inc.
 - Research Scientist Intern, Seed Group (ML System)
 - Supported a LLM training simulator to simulate the training latency of LLM
 - Supported memory profiling and distributed training simulation in frameworks
 - Supported various parallelism techniques in Bytedance opensource distributed machine learning framework.

Self-Introduction

Research Area

- Efficient machine learning systems (LLMs)
 - LLM training/inference speedup
- Autonomous drones & efficient mobile vision system

Project Report

Shilong Lei

SimpleFSDP: Automatic Selective Unsharding

Shilong Lei

Mentor: Shuai Yang

Date: Aug 21, 2025

Motivation

- Training large models = balancing communication, computation, memory
- SimpleFSDP exposes AG/RS ops as explicit PT2 graph nodes → enables graph-level optimization
- Current limitations:
 - Fixed bucket size → communication bubbles
 - Binary policies: free-all vs keep-all
 - Free-all: minimal memory but redundant AG in backward
 - Keep-all: no redundant comm but huge memory footprint
- Goal:

Use *idle GPU memory* to **avoid redundant all-gathers** and **improve training throughput**.

Key Idea

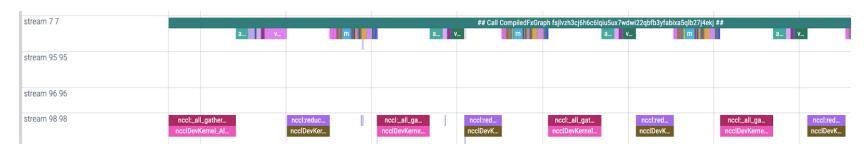
Selective Unsharding Framework

- "Retain only the parameters that yield the best communication savings per unit memory."
- Benefits:
 - Reduces backward AG communication
 - Uses spare memory intelligently
 - Works with PT2/compile-friendly SimpleFSDP
- Modes:
 - 1. Manual user specifies modules to unshard
 - 2. Automatic system selects modules based on memory budget & granularity

SimpleFSDP Enhancements

1. Configurable Bucket Size

- Bucket size can be set per-layer or global
- Helps align AG/RS with compute workloads
- Reduces comm bubbles
- APS-friendly configuration
- Example:
 - all_gather_bucket_cap_mb: {"default": 2000, 2: 1000}



Hierarchical Module Memory Profiling

Why needed?

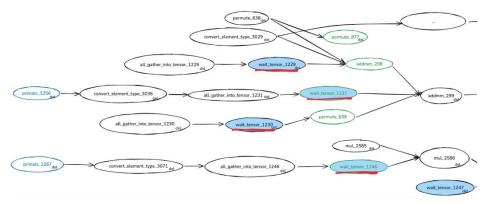
- PT2 compile breaks module → graph-node mapping
- Need memory footprint & mapping to decide unsharding

Our solution

- tlparse-based hierarchical memory profiler
- Records:
 - module <=> graph node mapping
 - memory cost per module/submodule
- Supports profiling only all_gather_into_tensor nodes

• Enables:

- memory-aware unsharding
- recursive splitting
- automatic greedy selection



Selective Unsharding Framework

Manual Mode

- automatic: false
- User directly provides target modules
- Deterministic, expert-controlled

Automatic Mode

- automatic: true
- Input: memory_limit, granularity, target modules
- Greedy reverse traversal:
 - unshard late modules first
 - split large modules if needed
 - stop when reaching budget

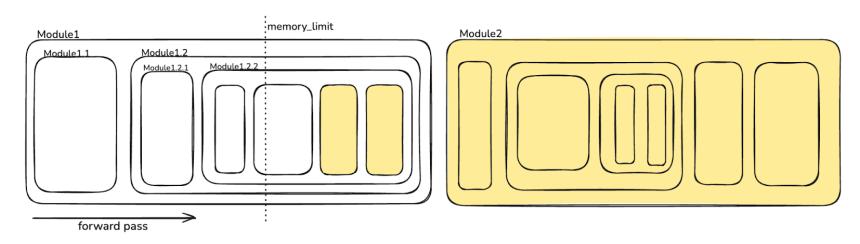
Automatic Unsharding Algorithm (Simplified)

Reverse-order greedy selection:

- 1. Try to fit a module into memory budget
- 2.If too large \rightarrow recursively split
- 3. Stop when no more progress possible

• Rationale:

Later-forward modules = shorter residency \rightarrow cheaper to unshard.

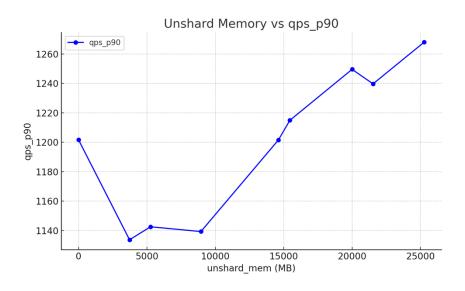


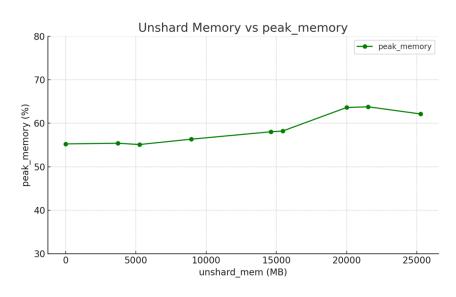
Experiment Setup

- **Hardware**: 8 × GPUs (GRANDTETON)
- Model: OmniFM v2 (pruned)
- Batch size: 128
- Iterations: 1000
- Experiments:
 - **1.Manual mode:** progressively unshard later → earlier modules
 - **2.Auto mode:** sweep memory_limit from small → large

Manual Mode Results

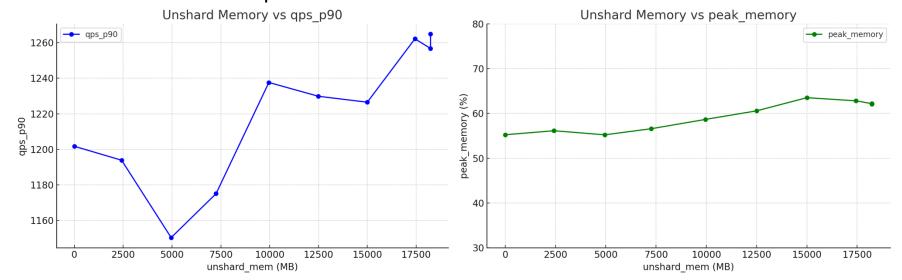
- Observation:
 - QPS increases as unshard size grows
 - GPU memory usage rises accordingly
 - Best configuration: ~5.5% QPS improvement
 - Confirms: *idle memory* → *better efficiency*





Auto Mode Results

- Observation:
 - As memory_limit increases:
 - Selected unshard size increases
 - QPS improves (not strictly monotonic)
 - Achieved +5% QPS increase with large budgets
 - No manual expertise needed → easier for users



Discussion

Why some partial unsharding regresses?

- Some AGs are not exposed or not on the critical path
- Removing non-critical AGs does not reduce latency
- Takeaways:
- Memory-aware selection is key
- Communication savings vary per module
- Future: identify critical-path AGs

Future Work

1. Smarter Unshard Policies

- Prioritize modules with exposed AGs
- Cost-benefit ranking instead of pure greedy

2. Dynamic & Adaptive Bucketing

- Auto-tuning bucket sizes
- Runtime adaptation based on memory pressure or comm patterns

3. Broader Evaluation

- More models, deeper architectures
- Expect larger gains for bigger models

4. Runtime Integration

- Tighter coupling with PT2 compiler & memory manager
- Fully automated memory–communication co-optimization

Conclusion

- Introduced Selective Unsharding for SimpleFSDP
- Trades idle GPU memory for reduced communication
- Achieved ~5.5% QPS improvement on OmniFM v2
- Flexible: manual + automatic modes
- Provides a new design dimension:
 memory → communication → performance

DiT Training Simulator

Shilong Lei, Zhihao Bai (mentor), Yanghua Peng (mentor), Haibin Lin 2024 May – 2024 Aug

Design / Workflow

- 1. Get model forward graph and backward graph. (PyTorch.fx)
- 2. Get nodes and ops and corresponding inputs tensor meta (shape, dtype)
- 3. Run each ops to get each kernel latency.
- 4. Calculate memory constraints.
- 5. Construct a timeline which can be viewed by Perfetto.ui & tensorboard.
- 6. Support: data parallel, pipeline parallel, tensor parallel, sequence parallel.

Contribution

- 1. Successfully support several DiT video generation models into the simulator.
 - 1. forward latency / backward latency (95%+ accuracy)
- 2. Support pytorch.FSDP zero2/3 timeline with pipeline and memory constraints.
 - 1. AllGather latency / ReduceScatter latency (90%+ accuracy)
 - 2. FSDP differenct strategy in timeline and memory.
 - 3. Memory profiling and calculation
 - 4. Add AG/RS to timeline.
- 3. WIP: Simulated in large scale (eg. 100 ~ 1k GPUs) to verify.
- 4. Assisting to supported MoE model and pytorch.FSDP to ByteDance opensource training framework veScale.

OOGC-LLM: An Efficient Out-of-GPU-Core LLM Training System

Shilong Lei, Yikang Yue, Yuxuan Liu, Xuehai Qian 2023 May – 2024 Jan

• ZeRO-Offloading: LLM -> GPU memory -> CPU memory / NVMe

 Current system fails to maximize the value of fast GPU memory and CPU memory. (C2G and G2C are bottleneck)

 We want to develop a more efficient offloading system for groups with insufficient computing resources

- DeepSpeed's ZeRO3
- Fail to maximize the value of GPU / CPU memory.

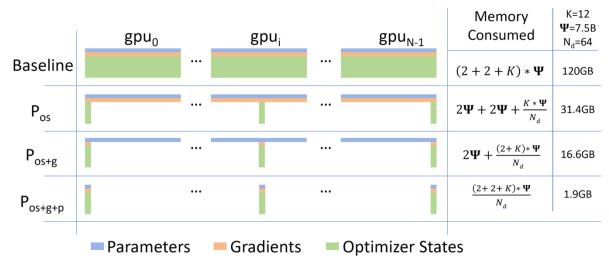
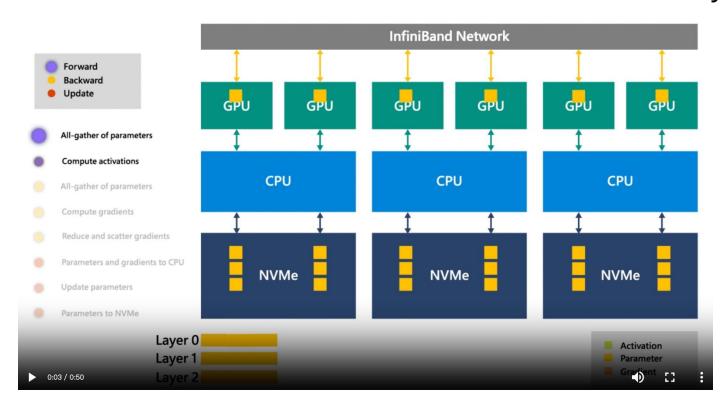


Figure 1: Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations. Ψ denotes model size (number of parameters), K denotes the memory multiplier of optimizer states, and N_d denotes DP degree. In the example, we assume a model size of $\Psi = 7.5B$ and DP of $N_d = 64$ with K = 12 based on mixed-precision training with Adam optimizer.

https://www.microsoft.com/en-us/research/blog/zero-infinity-and-deepspeed-unlocking-unprecedented-model-scale-for-deep-learning-training/

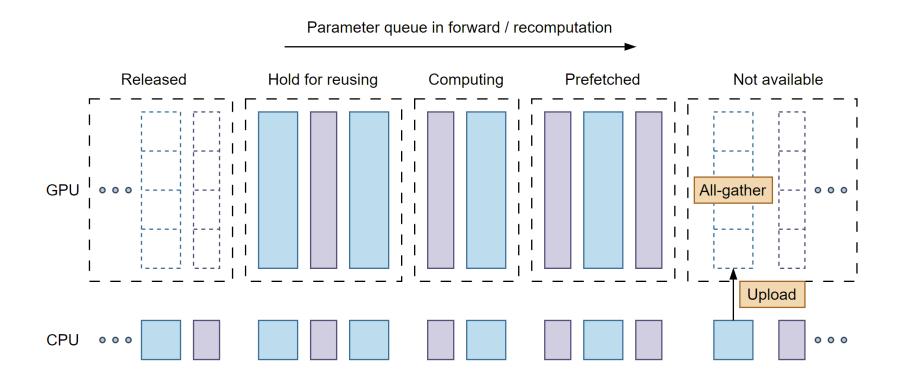
- ZeRO Offload
- Fail to maximize the value of GPU / CPU memory.



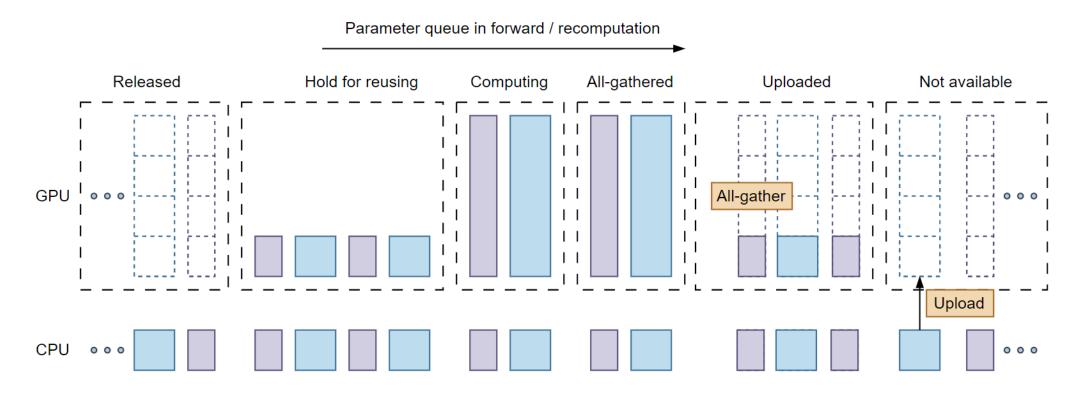
https://www.microsoft.com/en-us/research/blog/zero-infinity-and-deepspeed-unlocking-unprecedented-model-scale-for-deep-learning/

- ZeRO Offload Drawbacks:
 - The GPU memory and CPU memory is underutilized.
 - Just a few params reside in GPU memory
 - While the CPU is active, the GPU remains idle, and vice versa.
 - GPU: fwd / bwd CPU: step
 - Does not fully support Mixture-of-Experts (MoE) model
 - Optimization opportunities from imbalance expert

- Multi-layer prefetching and lazy all-gather
 - ZeRO:

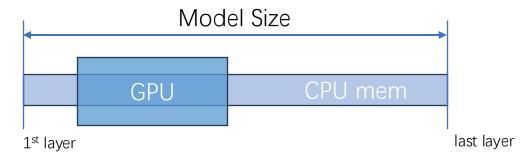


- Multi-layer prefetching and lazy all-gather
 - Ours:



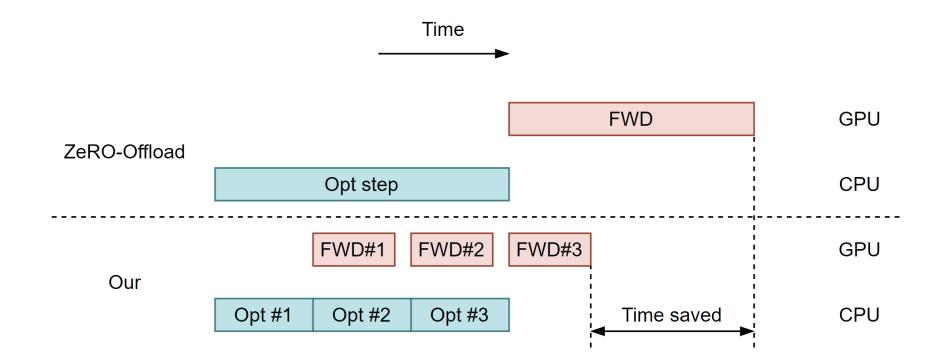
• Improves GPU memory utilization, reduce C2G / G2C

- Memory Management
 - ZeRO:
 - Static: size need to be configured by user otherwise Out of Memory
 - Prefetch just next module from CPU memory or NVMe
 - Just a few modules reside in GPU, which makes GPU memory underutilized
 - Ours:
 - **Dynamic**: CUDA swapper (GPU/CPU) + CPU swapper (CPU/NVMe) fits user's memory
 - Sliding window



- Eviction planner
 - optimal strategy: Discard the least commonly used parameters
 - optimizer states -> gradients -> parameters

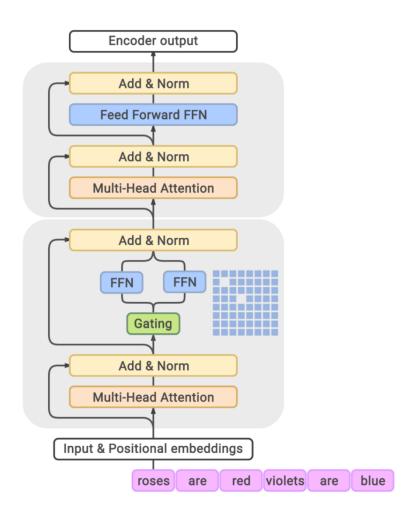
- Pipelined optimizer step
 - ZeRO:
 - CPU Step after GPU forward/backward
 - Ours:



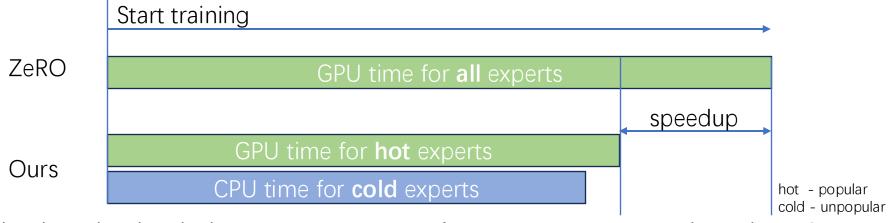
MoE Model

- Backgroud
 - Unbalanced activated expert models
 - Similar activation **patterns** between iterations
 - Very large model size

- ZeRO:
 - Does not fully support MoE, especially Parameter offload



- MoE Model
 - Ours:
 - Support MoE model
 - Forward / Backward: CPU for unpopular experts / GPU for popular experts
 - Reduce 20% CPU to GPU communication and GPU computation.
 - Intuition: for unpopular experts, C2G + GPU + G2C is slower than CPU.



 Activation checkpointing: remove unpopular expert recomputation, since CPU memory is large enough.

Evaluation

 Memory management system and asynchronized stepping resulting in a 20% end-to-end speedup.

- MoE part can yield an improvement of around 15% (estimation)
 - Based on optimal prediction.

 All parts weren't fully integrated. The whole workflow hasn't been evaluated.

My Role

Leader of the project. Mentored 2 interns.

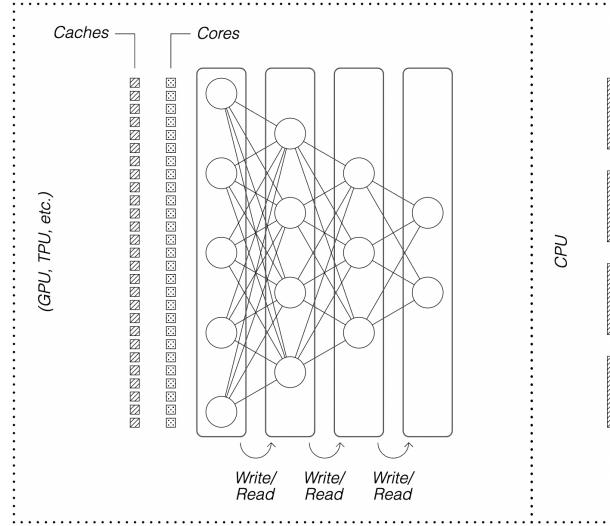
- Proposed optimization strategies
 - Multi-layer prefetching and lazy all-gather. Yikang
 - Memory Management.
 Yuxuan
 - Pipelined optimizer step.
 Shilong
 - MoE optimization.
 Shilong

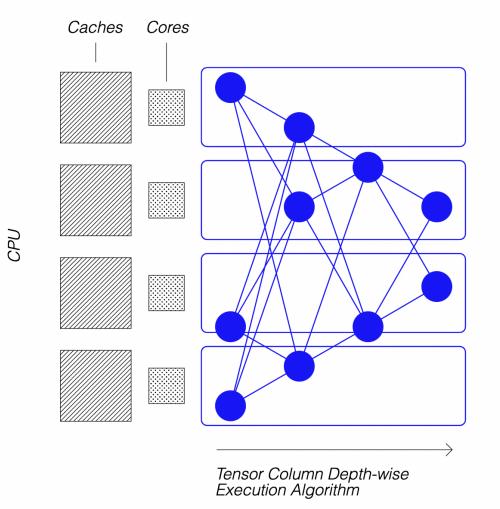
Inference System for Machine Learning Models on CPU

Shilong Lei, Gengyu Rao, Xuehai Qian

Hardware Accelerators

CPU

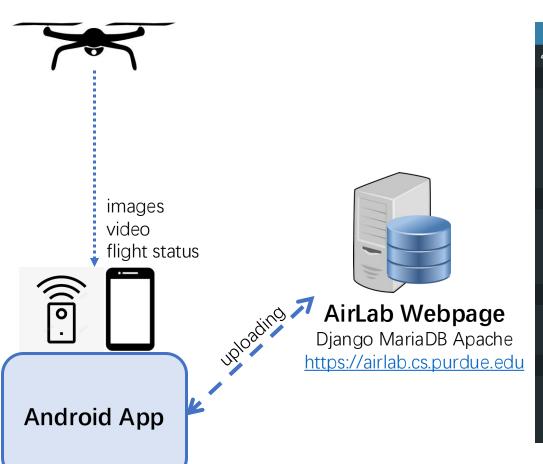


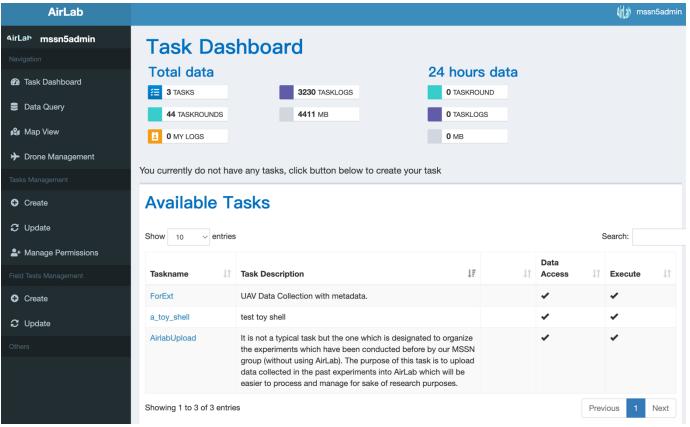


AirLab Platform

Shilong Lei, Jiaxin Du, Chunyi Peng

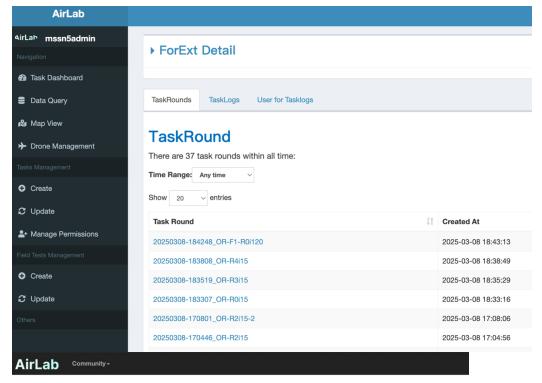
Framework





Framework

- The raw flight status will be parsed and processed into DB.
 - Can be viewed in map view.
- Data Management:
 - Task
 - Taskround
 - Tasklogs
- Drones Management
 - Add/edit drones; Status; User;
 - Checkout/Expected return time
- Field Tests Management
 - Start time & end time; Drones; User
- WIP:
 - Labeling
 - Training
 - Inferencing



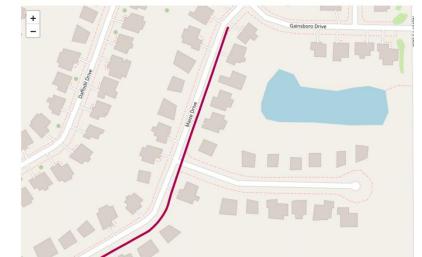
TaskRound Name: taskround OR-R3v15

TaskRound ID: a1480445-34d4-48b0-90c1-03e10ee26a06

Created_at: Feb. 11, 2025, 4:30 p.m.

Related to Task: Test_task

GPS Route



D-Air-Patrol Project

(mobiCom'24 Best Poster Award)

Jiaxin Du, Shilong Lei, Chunyi Peng 2024 Jan – 2024 May

Framework

- 1. A drone controlled by phone app monitoring the road traffic.
- 2. Frames are transmitted to an edge server for speed detection.
- 3. Motion detection is enhanced by 2 layers method: base layer + motion layer.

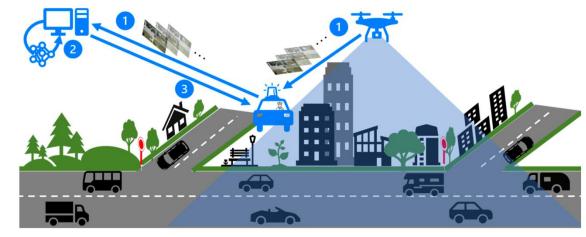


Figure 1: Illustration of air patrol using drones to monitor traffic and detect traffic law violations from the sky.

Design

- 1. Base Layer: U-Net semantic segmentation to locate static road region.
- 2. Motion Layer: tracking vehicles within the road region rather than processing the entire image.
 - 1. YOLOv8
 - 2. Optical Flow
 - 3. ByteTrack (enhance continuous tracking)

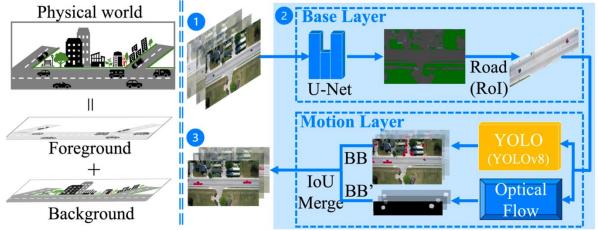


Figure 2: Overview of D-AirPatrol (BB: bounding box).

Evaluation

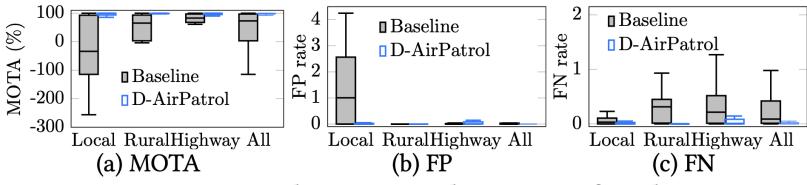


Figure 3: Evaluation over three types of roads.

